½²×ùÖ÷Ì⣺Efficient numerical scheme for a dendritic solidification phase field model with melt convection
Ö÷½²ÈË£º³Â´«¾ü
¹¤×÷µ¥Î»£º×ðÁú¿Ê±¹ÙÍø
½²×ùʱ¼ä£º2019Äê4ÔÂ22ÈÕ£¨ÖÜÒ»£©ÏÂÎç16:00
½²×ùµØµã£ºÊýѧԺ341
Ö÷°ìµ¥Î»£º×ðÁú¿Ê±¹ÙÍøÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº
ÄÚÈÝÕªÒª£º
We consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented.
Ö÷½²È˽éÉÜ£º
³Â´«¾ü£¬½ÌÊÚ£¬×ðÁú¿Ê±¹ÙÍøÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº¸±Ôº³¤£¬Ö÷Òª´ÓʼÆËãÊýѧƫ΢·Ö·½³ÌÊýÖµ½â·¨¡¢¿ÆÑ§¹¤³ÌÓë¼ÆËãµÈÁìÓòµÄÑо¿¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿¡¢ÇàÄêÏîÄ¿¸÷1ÏÖ÷³Öɽ¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÇàÄêÏîÄ¿1ÏÖ÷³ÖÖйú²©Ê¿ºó¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿1ÏÖ÷³Öɽ¶«Ê¡½ÌÓýÌü¿Æ¼¼¼Æ»®ÏîÄ¿1Ï²ÎÓë¶àÏî¸÷Àà×ÝÏò¿ÎÌ⣬»ñµÃɽ¶«Ê¡¸ßµÈѧУ¿ÆÑ§¼¼Êõ½±Ò»µÈ½±1ÏµÚһ룩£¬·¢±íѧÊõÂÛÎÄ30ÓàÆª£¬ÆäÖÐ20ÓàÆª±»SCIÊÕ¼¡£