ѧÊõÔ¤¸æ Ê×Ò³  >  ѧÊõ¿ÆÑÐ  >  ѧÊõÔ¤¸æ  >  ÕýÎÄ

ѧÊõÔ¤¸æ-On equitable tree-colorings of graphs
×÷Õߣº     ÈÕÆÚ£º2019-06-26     À´Ô´£º    

½²×ùÖ÷Ì⣺On equitable tree-colorings of graphs

Ö÷½²ÈË£º ÕÅÐÀ

¹¤×÷µ¥Î»£ºÎ÷°²µç×ӿƼ¼´óѧ

½²×ùʱ¼ä£º2019Äê6ÔÂ27ÈÕ10:00

½²×ùµØµã£ºÊýѧԺ´ó»áÒéÊÒ

Ö÷°ìµ¥Î»£º×ðÁú¿­Ê±¹ÙÍøÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº

ÄÚÈÝÕªÒª£º

An equitable tree-$k$-coloring of a graph is a vertex coloring using $k$ distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. The minimum integer $k$ such that a graph $G$ is equitably tree-$k$-colorable is the equitable vertex arboricity of $G$, denoted by $va_{eq}(G)$. A graph that is equitably tree-$k$-colorable may admits no equitable tree-$k'$-coloring for some $k'>k$. For example, the complete bipartite graph $K_{9,9}$ has an equitable tree-$2$-coloring but is not equitably tree-3-colorable. In view of this a new chromatic parameter so-called the equitable vertex arborable threshold is introduced. Precisely, it is the minimum integer $k$ such that $G$ has an equitable tree-$k'$-coloring for any integer $k'\geq k$, and is denoted by $va_{eq}^*(G)$. The concepts of the equitable vertex arboricity and the equitable vertex arborable threshold were introduced by J.-L. Wu, X. Zhang and H. Li in 2013. In 2016, X. Zhang also introduced the list analogue of the equitable tree-$k$-coloring. There are many interesting conjectures on the equitable (list) tree-colorings, one of which, for example, conjectures that every graph with maximum degree at most $\Delta$ is equitably tree-$k$-colorable for any integer $k\geq (\Delta+1)/2$, i.e, $va_{eq}^*(G)\leq \lceil(\Delta+1)/2\rceil$. In this talk, I review the recent progresses on the studies of the equitable tree-colorings from theoretical results to practical algorithms, and also share some interesting problems for further research.

Ö÷½²È˽éÉÜ£º

ÕÅÐÀ£¬2007Äê7Ô±ÏÒµÓÚɽ¶«´óѧÊýѧÓëϵͳ¿ÆÑ§Ñ§Ôº£¬»ñµÃÀíѧѧʿѧλ£¬Í¬Äê9Ô£¬½øÈëɽ¶«´óѧÊýѧѧԺ¹¥¶Á²©Ê¿Ñ§Î»£¬Ê¦´ÓÎ⽨Á¼½ÌÊÚ£¨Ë¶Ê¿½×¶Î£©ÓëÁõ¹ðÕæ½ÌÊÚ£¨²©Ê¿½×¶Î£©£¬ÓÚ2012Äê6Ô±ÏÒµ²¢»ñµÃÀíѧ²©Ê¿Ñ§Î»£¬ÏÖÈÎÎ÷°²µç×ӿƼ¼´óѧÊýѧÓëͳ¼ÆÑ§Ôº¸±½ÌÊÚ¡¢Ë¶Ê¿Ñо¿Éúµ¼Ê¦£¬Ö÷Òª´ÓÊÂͼÂÛ¼°ÆäÓ¦Ó÷½ÏòµÄ¿ÆÑнÌѧ¹¤×÷£¬Ñо¿ÐËȤ°üÀ¨Í¼£¨ÍøÂ磩µÄÍØÆË½á¹¹ÓëȾɫ£¨»®·Ö£©£¬ÐÅÏ¢±àÂëÀíÂ۵ȣ¬ÏÖ·¢±íSCI¼ìË÷ѧÊõÂÛÎÄ60ÓàÆª£¬Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏ»ù½ðÏîÄ¿ÓëÇàÄê¿ÆÑ§»ù½ðÏîÄ¿¸÷Ò»Ï¸ßµÈѧУ²©Ê¿Ñ§¿ÆµãרÏî¿ÆÑлù½ðÒ»ÏÉÂÎ÷Ê¡×ÔÈ»¿ÆÑ§»ù´¡Ñо¿¼Æ»®ÃæÉÏÏîÄ¿ÓëÇàÄêÈ˲ÅÏîÄ¿¸÷Ò»ÏÈëÑ¡Î÷°²ÊпÆÐ­ÇàÄêÈ˲ÅÍоټƻ®£¬Ôø»ñµÃɽ¶«Ê¡ÓÅÐ㲩ʿѧλÂÛÎĽ±£¬ÉÂÎ÷¸ßµÈѧУ¿ÆÑ§¼¼Êõ½±¶þµÈ½±£¬ÖйúÔ˳ïѧ»áÇàÄê¿Æ¼¼½±µÈ¶àÏî¿ÆÑн±Àø£¬ÏÖΪ¡¶Journal of Combinatorial Theory, Series B¡·¡¢¡¶Journal of Graph Theory¡·¡¢¡¶Discrete Applied Mathematics¡·¡¢¡¶Discrete Mathematics¡·¡¢¡¶Graphs and Combinatorics¡·¡¢¡¶Êýѧѧ±¨£¨Ó¢Îİ棩¡·µÈ¹ú¼ÊÆÚ¿¯µÄÉó¸åÈË£¬ÃÀ¹úÊýѧ»á¡¶Mathematical Reviews¡·ÆÀÂÛÔ±£¬ÖйúÔ˳ïѧ»áͼÂÛ×éºÏ·Ö»áÇàÄêÀíÊ£¬Öйú¹¤ÒµÓëÓ¦ÓÃÊýѧѧ»áͼÂÛ×éºÏ¼°Ó¦ÓÃרҵίԱ»áίԱ¡£

°Ù¶ÈһϠËÑË÷ ×ðÁú¿­Ê± - ÈËÉú¾ÍÊDz«!