½²×ùÖ÷Ì⣺The shifted convolution quadrature for fractional calculus and its applications
Ö÷½²ÈË£ºÁõÑó
¹¤×÷µ¥Î»£ºÄÚÃɹŴóѧ
½²×ùʱ¼ä£º2019Äê10ÔÂ11ÈÕ£¨ÖÜÎ壩ÏÂÎç2:30
½²×ùµØµã£ºÊýѧԺ´ó»áÒéÊÒ341
Ö÷°ìµ¥Î»£º×ðÁú¿Ê±¹ÙÍøÊýѧÓëÐÅÏ¢¿ÆÑ§Ñ§Ôº
ÄÚÈÝÕªÒª£º
The convolution quadrature theory is a systematic approach to analyse the approximation of the Riemann-Liouville fractional operator. In this talk, we develop the shifted convolution quadrature (SCQ) theory which generalizes the theory of convolution quadrature by introducing a shifted parameter to cover as many numerical schemes. The constraint on the parameter is discussed in detail and the phenomenon of superconvergence for some schemes is examined from a new perspective. For some technique purposes when analysing the stability or convergence estimates of a method applied to PDEs, we design some novel formulas with desired properties under the framework of the SCQ. We conduct some numerical tests with nonsmooth solutions to further con?rm our theory. Finally, a finite element method combined with the shifted convolution quadrature is developed and discussed.
Ö÷½²È˽éÉÜ£º
ÁõÑó£¬ÄÚÃɹŴóѧÊýѧ¿ÆÑ§Ñ§Ôº½ÌÊÚ£¨²©Ê¿£©¡¢²©Ê¿Éúµ¼Ê¦£¬ÏÖÈÎÖйú¼ÆËãÊýѧѧ»áÀíÊ¡£Ö÷Òª´ÓÊÂ΢·Ö·½³ÌÊýÖµ½â·¨Ñо¿£¨ÓÐÏÞÔª·½·¨¡¢»ìºÏÓÐÏÞÔª¡¢¼ä¶ÏGalerkin·½·¨£¬ÓÈÆäÊÇ·ÖÊý½×΢·Ö·½³ÌÊýÖµ·½·¨£©¡£Ä¿Ç°·¢±í¶àƪѧÊõÂÛÎÄ£¬ÆäÖÐSCI 40ÓàÆª£¬ÔÚ¹ú·À¹¤Òµ³ö°æÉç³ö°æ¹ØÓÚ¡°Æ«Î¢·Ö·½³ÌµÄ·Ç±ê×¼»ìºÏÓÐÏÞÔª·½·¨¡±×¨ÖøÒ»²¿¡£Ä¿Ç°Ö÷³ÖÔÚÑлò½áÌâ2Ïî¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¡¢2ÏîÄÚÃɹÅ×ÔÈ»¿ÆÑ§»ù½ðºÍ1ÏîÄÚÃɹÅ×ÔÖÎÇø¸ßУ¿ÆÑ§Ñо¿ÖصãÏîÄ¿¡£